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I. Introduction

The optimal trajectory of a maneuvering hypersonic reentry vehicle, such as the Space

Shuttle, is generated as the solution to a constrained two point boundary value problem.

The boundary value problem is formulated via identifying both initial and final conditions,

such as launch and landing geographic locations. Furthermore, the problem is constrained

by limiting angle of attack, aerodynamic heating, and setting upper and lower boundaries

on altitude. These conditions define the Hessian from which the optimal solution of the

boundary value problem is solved.

While analytical methods exist to solve a range of elementary boundary value problems,

the complexity of problems such as a hypersonic vehicle reentry trajectory are better suited

to numerical methods. This approach is well established in dedicated trajectory generation

codes such as NASA-Langley’s Program to Optimize Simulated Trajectories (POST) and

NASA-Glenn’s Optimal Trajectories by Implicit Simulations (OTIS). While the approaches

to solving the boundary value problem differ, both of the above mentioned codes have been

shown by Nelson4 to produce nearly identical numerical results in the case of minimally

constrained trajectories. In the case of a more heavily constrained problem, however, the

solutions from the two codes may begin to diverge in solution, or have the case when one

fails to converge on a solution altogether.

The necessity to increase the number of constraints on a reentry trajectory is reliant on

the definition of the mission of the reentry vehicle. In the case of the Space Shuttle, the

solution space is constrained by the physical constraints mentioned above, but with few if

any intermediate waypoint constraints. In the case of a more demanding mission profile

additional constraints are levied on the problem. These can include physical constraints

such as maximizing the lift to drag ratio in order to maximize the down range capability

of the vehicle. Additional constraints can also be geographic in nature, such as avoiding

overflight of specified airspace. Due to these additional constraints the ability to converge

to an optimal solution becomes dependent on the numeric method used.

The objective of this paper is to demonstrate the ability of pseudospectral method to

converge to a constrained optimal reentry trajectory in ever increasing levels of constraint

complexity. The generated numeric solutions and time to convergence are evaluated to

those generated by POST for the purpose of comparison to an established solution method.

DIDO5–9 also implements the pseudospectral method; however, GPOCS’s implementation of

phases is more compatible with interior point constraints, such as waypoints.
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II. Optimization Methods

As stated in the introduction, several numerical techniques exist to solve constrained two

point boundary value problems cast as hypersonic vehicle trajectory problems. This section

will briefly introduce the numeric optimization techniques used in both POST and GPOCS.

II.A. Optimization in POST

The optimization method available in POST is the accelerated projected gradient method

(PGA). The PGA algorithm is an iterative technique designed to solve a general class of

nonlinear programming problems. PGA uses a cost function and constraint gradient in-

formation in place of a multidimensional optimization problem by a set of equivalent one

dimensional searches. With this approach, the initial function of the PGA algorithm is to

ensure constraint satisfaction, however the terminal phase of the optimization primarily en-

sures a reduction in the cost function. As with the case of many optimization approaches

that rely on gradient information to arrive at a global minimum, shallow gradients can lead

to long convergence times or fail to converge altogether. One additional problem with this

optimization method is that all constraints must be considered simultaneously during the

solution, which can lead to non-convergence in the case of a highly constrained problem.

II.B. Optimization in GPOCS

GPOCS uses the pseudospectral optimization method to converge to a minimal cost of a

two-point boundary value problem. As stated by Jorris,10,11 the purpose of pseudospectral

methods is to approximate the continuous solution to a set of differential equations using

polynomial interpolation through discrete points or nodes. The motivation is to avoid se-

quential integration which can lead to divergence and may prohibit determining a solution.

Lagrange, Legendre or Chebyshev polynomials, shown in Figure 1, may be used to satisfy the

differential equations at a discrete number of nodes N . Computing the solution at the nodes

is also termed collocation. These collocation techniques satisfy all the nodes simultaneously,

thus avoiding the pitfalls of integration, especially the forward and backward integration

within the shooting method. To ensure computational accuracy of the solution derived us-

ing this method, the spacing of the nodes is of critical importance. While equally spaced

nodes are the simplest approach, the polynomial interpolation will lead to large errors as the

number of nodes is increased. To avoid this phenomenon, known as Runge Phenomenon,

Chebyshev point placement as defined in equation 1 may be used to distribute the nodes.

The roots of the Legendre polynomials, or Gauss points, may also be used. The use of these

non-uniformly spaced points allows for increased polynomial interpolation accuracy as the

3 of 33

American Institute of Aeronautics and Astronautics - 18-21 August 2008 - Honolulu, Hawaii



Figure 1. Comparison of Legendre and Chebyshev Polynomials.12

number of nodes increases.

xj = cos(
jπ

N
), j = 0, 1, . . . , N (1)

For example, the benefit of using Chebyshev node spacing over equal spacing is depicted

in Figure 2. One area of concern is that the midpoint regions along a trajectory can have

relatively low node density, however this can be addressed through the use of phases. The

term phases refers to inserting intermediate events into the entire span of nodes. These

additional nodes create interior boundary conditions by creating new internal endpoints.

This approach has the benefit of adding a higher density of nodes in regions that may

otherwise have relatively low node density, which increases solution accuracy. In practice,

this ability to segment the solution of a set of differential equations into phases allows

greater freedom in defining a highly constrained boundary value problem. A more detailed

explanation of this optimization technique is covered in Appendix B.

III. Methodology

This section briefly describes the methodology used in this paper to derive a technique

that converges to a merit optimal solution. The derived method has been set up to ensure
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Figure 2. Demonstration of Runge Phenomenon with Equally Space Nodes.10
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satisfaction of waypoint and no-fly zone constraints while requiring minimal computational

time. The trajectory is constrained by the equations of motion, intermediate waypoint and

no-fly zone constraints, and bank angle and lift control limitations. As a note, the bank

angle control may be limited by structural loads, controllability, or heating constraints.

The limitation on bank angle translates to a minimum turn radius to transition from one

waypoint or no-fly zone to the next, while the coefficient of lift is used to modulate the rate

of descent. Two dimensional analysis10 demonstrated the use of a geometric solution as an

initial guess to the dynamic optimization technique. The work herein expands upon this

previous research11 to include a full three dimensional environment incorporating the earth’s

rotation. This expansion from a 2 dimensional to 3 dimensional environment allows for a

more realistic representation of hypersonic vehicle equations of motion.

III.A. Assumptions

The following assumptions are made to scope the research effort:

1. The waypoints are specified in the desired sequence.

2. Inner-loop control is available. Only the outer-loop or trajectory generation is ad-

dressed.

3. Waypoints are sufficiently spaced such that no two are within the turn radius of the

vehicle.

4. The no-fly zones are specified as elliptical exclusion zones, radiating from the center of

the Earth.

III.B. Analysis

The dimensional equations of motion for an atmospheric reentry vehicle about a spher-

ical, rotating Earth, as described by Vinh,13 with coefficient of lift (CL) and coefficient of

drag (CD) are used to describe the reentry trajectory. As a note, the subscript d denotes

dimensional, all angles remain in radians, and thrust is assumed zero as vehicle considered

in this work is a glide vehicle. Additionally, terms denoted by a ’hat’, x̂, denote a nondi-

mensional representation of a state variable. For reference, the angles used in the equations

of motion are displayed in Figure 3.
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Figure 3. Spherical Coordinates for Atmospheric Flight: longitude θ, latitude φ, heading angle ψ, flight path

angle γ, and bank angle σ

First, the dimensional kinematic and dynamic equations of motion are presented in equa-

tion 2 where ωe is the angular velocity of earth’s rotation.

ṙd = Vd sin γ

θ̇ =
Vd cos γ cosψ

rd cosφ

φ̇ =
Vd cos γ sinψ

rd

V̇d =
−Dd

md

− gd sin γ + rdω
2
e cos φ [cosφ sin γ − sinφ sinψ cos γ]

γ̇ =
1

Vd

[

Ld
md

cosσ − gd cos γ +
V 2
d

rd
cos γ

]

+2Vdωe cosφ cosψ + rdω
2
e cosφ [cos φ cos γ − sinφ sinψ sin γ]

ψ̇ =
1

Vd

[

Ld sin σ

md cos γ
− V 2

d

rd
cos γ cosψ tanφ+ 2Vdωe [sinψ cosφ tan γ − sinφ]

− rdω
2
e

cos γ
sinφ cosφ cosψ

]

(2)

For the purpose of optimization, the equations in 2 are normalised so that a change in one

unit of each state element is approximately of equal significance.14 These equations can be

7 of 33

American Institute of Aeronautics and Astronautics - 18-21 August 2008 - Honolulu, Hawaii



non-dimensionalized and simplified using the variables in Eq. (3).13,15

τ =
t

√

r0/g0

r̂ =
rd
r0

gd = g0

(

r0
rd

)2

=
g0

r2
thus g0 = gs

(

R⊕

r0

)2

V̂ =
Vd√
g0r0

D̂ =
Dd√
g0md

L̂ =
Ld√
g0md

ρ = ρ0e
−βr0h (3)

The control variables are bank angle (σ) and the angle of attack (α), which ultimately

regulates the lift and drag terms in equation 2. The resulting non-dimensional equation of

motion are:

˙̂r = V̂ sin γ

˙̂
θ =

V̂ cos γ cosψ

r̂ cos φ

˙̂
φ =

V̂ cos γ sinψ

r̂
˙̂
V = −̂D − sin γ

r̂2
+ r̂ω2

e cosφ [cosφ sin γ − sinφ sinψ cos γ]

˙̂γ =
1

V̂

[

L̂ cosσ − cos γ

r̂2
+
V̂ 2

r̂
cos γ

]

+2V̂ ωe cosφ cosψ + r̂ω2
e cosφ [cosφ cos γ − sin φ sinψ sin γ]

˙̂
ψ =

1

V̂

[

L̂ sin σ

cos γ
− V̂ 2

r̂
cos γ cosψ tanφ+ 2V̂ ωe [sinψ cosφ tan γ − sinφ]

− r̂ω2
e

cos γ
sinφ cosφ cosψ

]

(4)

The atmospheric model used in this work was based on the U.S. Standard Atmosphere

in 1976,16,17 with an extended altitude range of 1000km. Additionally, a spherical earth is

considered in this work and thus results in a Newtonian, or inverse square law, gravity field.
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IV. Results

The equations presented in the previous section are used to replicate generic hyper-

sonic vehicle simulation results derived from Program to Optimize Simulated Trajectories

(POST).18,19 The constant speed/altitude 2-D optimal solution was previously presented10

and derived using the discontinuous costate dynamic optimization method.20 The same

technique will now be applied to the 3-dimensional spherical Earth problem.

This section compares the results for several simulated 3-dimensional optimal trajectories

as calculated by both POST and GPOCS. A set of desired mission profiles are established

to use as a common comparison between the two methods. The missions range in constraint

complexity, beginning with a benign constraint case and ending with a heavily constrained

mission profile. The desired trajectories consist several constraints, which include control,

heating, altitude, waypoint, and flight restriction zone constraints. The results of this anal-

ysis compare and contrast the effectiveness of the optimization methods in both POST and

GPOCS to arrive at an optimal solution for each of the constrained mission profiles. The

results in this section provide insight into the advantages and disadvantages in using dif-

ferent optimization methods for a range of mission complexities. Three comparisons make

the overall evaluation of the two methods; the first to compare the underlying system dy-

namics of the two methods, the second to evaluate a simple max range comparison, and the

final to compare a heavily constrained trajectory. The evaluation will begin with the first

comparison to evaluate the system dynamics.

IV.A. Dynamics Comparison

The first comparison focuses on evaluating the basic dynamics, atmospheric model, and

gravity model between POST and GPOCS. This comparison is setup to ensure subsequent

comparisons are made using identical system dynamics, atmospheric model, and gravity

model. This comparison also includes an evaluation between the implicit and explicit inte-

gration methods used in GPOCS and POST, respectively. This is to ensure the integration

methods deliver identical results for an identical problem formulation. As stated earlier, the

extended US76 atmosphere and Newtonian gravity field is used in both GPOCS and POST.

To ensure identical dynamics setups a simple open loop, non optimised trajectory was inte-

grated forward in time using a single fixed angle of attack and bank angle in both POST and

GPOCS. This test resulted in identical trajectories between POST and GPOCS. As a note,

this comparison used the Runge-Kutta fourth order integration method19 for both POST

and the dynamics used in GPOCS. GPOCS, however, used an implicit integration method,

as discussed earlier. Therefore, before any comparison in optimization was to be done, a

9 of 33

American Institute of Aeronautics and Astronautics - 18-21 August 2008 - Honolulu, Hawaii



comparison of the separate integration methods was be performed. The initial conditions

and results of such comparison are presented in Figures 4 and 5. These results indicated

the implicit and explicit integration methods of POST and GPOCS, respectively, produced

identical trajectory results. As a note, this test used open loop, non-optimised trajectories,

with fixed angles of attack of 10 degrees and a bank angle of 60 degree.

Figure 4. Initial Conditions of Integration Method Comparison
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Figure 5. Trajectory Comparison of Integration Method Comparison

IV.B. Basic Optimization Comparison

The second set of comparisons involved an evaluation of the optimization methods in

both GPOCS and POST. For this, a simple maximum downrange trajectory optimization

was performed. The first trajectory to compare with the pseudo-spectral method was a

straight gliding trajectory meeting the requirements of the DARPA FALCON program21(ref:

9000nm glide range) for a 2000lb high lift hypersonic glide vehicle. The description of this

vehicle is outlined in Appendix A. For the POST trajectory, three angles of attack were used

to control the glide profile and allow for constraints on altitude if desired: the first AOA

during reentry determines the depth into the atmosphere the hypersonic vehicle reenters

before ‘skipping’ up into a glide, the second AOA determines how high the vehicle ‘skips’,

and the third is held constant for the remainder of the trajectory causing a ‘phugoid’ or

‘skipping’ trajectory. The initial conditions (or reentry conditions) were found given the

vehicle weight and range requirement. The resulting reentry velocity and flight path angle

were consistent with the original DARPA FALCON concept: launching a 2000lb HTV-1 from
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a SpaceX Falcon 1 launch vehicle. The three initial guesses for angles of attack were based

on experience. Once the initial conditions and guesses were set, non-optimized trajectories

using constant alpha and then constant bank angle were run to validate the equations of

motion in the pseudo-spectral model. To ensure simplicity in this evaluation the only criteria

that was evaluated was imply the cost of the final longitude value, with the only constraints

being a minimum altitude value of 27.4 kilometers, or 90k feet, and a final time of 3063

seconds, that being the run time of the POST trajectory. The maximum time was chosen

to more closely align the GPOCS results to that of the POST run. The initial conditions,

altitude, attained down range values, and angle of attack comparison plots are presented in

Figures 6,7,8, and 9.

Figure 6. Initial Conditions of the First Optimization Comparison
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The greatest distinction revealed from this comparison was the flexability in available

control afforded to the user in GPOCS, as seen in Figure 9 . Herein, the user defines a

control input vector containing the value of each control at every node along the trajectory.

This is contrasted with POST, where the user can only specify discrete control inputs which

are then optimised to attain the maximum down range value. Consequently, finer control

variability in GPOCS has resulted in a greater downrange value, as seen in Figure 8. The

next comparison will present a more constrained problem to compare and contrast.

IV.C. Complex Optimization Comparison

In this comparison, POST was set up to fly a hypersonic glide trajectory following a

ballistic reentry with fixed reentry conditions. Here, a problem was set up to launch a

hypersonic glide vehicle from Cape Canaveral to the Persian Gulf, flying over the Mediter-

ranean Sea with minimal overflight of land. This was done by specifying a waypoint at

the Strait of Gibraltar and two no-fly zones, one in North Africa and one in South-central

Europe. POST simulated the glide from reentry so an arbitrary reentry point (see output

files) was determined as an initial condition. The reentry velocity and flight path angle

were kept the same as the prior case, but reentry azimuth was allowed to vary assuming

a booster would tailor its profile to meet the desired end conditions. The trajectory was

optimized for maximum final altitude, terminating at a set velocity. This forced POST to
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converge to a solution that would conserve the most energy, i.e. not waste energy through

excessive maneuvering. However, significant maneuvering was required to hit the waypoint

and avoid the no-fly zones. Considering that reentry azimuth could vary, this required three

bank maneuvers for each geographic constraint and a fourth bank maneuver to straighten

the glide before the terminal condition. Bank angles, bank duration, and time between turns

were set up as independent variables to go along with the three angles of attack from before.

Dependent variables were reentry angle, and the geographic constraints of the waypoint and

no-fly zones. These constraints were defined by using ‘tracking stations’ in POST and apply-

ing limits to ‘slant range’ either forcing the trajectory towards or away from the particular

station.

To set up a problem such as this in POST, one cannot apply all the constraints at once

and expect POST to come to a solution. The problem must be built up as constraints are

applied one at a time. Using the trajectory from the pseudo-spectral validation and adding

four banking maneuvers, one could quickly converge to a solution that when projected on

a Mercator Projected map, looks close to the desired solution . However, the guesses for

angles of attack, bank angles, and durations were all based on experience and did not taking

into account the geographic constraints. This ‘first-cut’ is useful however for generating

new independent variables to be used once these constraints are applied. Additionally by

outputting the slant ranges for each of the three tracking stations, even though they are not

yet used for constraints, one can make changes in the independent variables to observe how

the slant ranges change to better determine the first guess once the constraints are applied.

Even though the above described trajectory is close to the solution, POST cannot yet

handle all three geographic constraints being applied at once. Therefore the problem added

the complexity of the waypoint located at the Strait of Gibraltar and the user could continue

to monitor the slant ranges to the other two tracking stations. This process continued, adding

one geographic constraint at a time until all constraints were applied and the problem could

be optimized. Even then, POST was unable to converge on a ‘best’ solution although all the

constraints were met.

Once the first trajectory to the Persian Gulf was found using POST each geographic

constraint was applied one at a time. The geographic constraints were based on tracking

stations with slant ranges used to either keep the trajectory near or far from the stations.

Because of the narrow width of the Strait of Gibraltar, the tolerance for the waypoint was

first a quarter nautical mile, but this prevented POST from converging on a solution. The

tolerance was then relaxed to one nautical mile and POST was then able to converge on

a solution. The no-fly zones were defined to avoid overflight of land in North Africa and

South-central Europe, so a minimum distance to each tracking station was defined. Here,
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the tolerance on each slant range had to be relaxed to five significant digits , as the slant

range is measured in feet. This translated to approximately one a two-thirds nautical miles.

The first trajectory to the Persian Gulf without any geographic constraints took a CPU

time of .4 seconds . Applying the first waypoint increased the CPU time to .5 sec . The

first no-fly zone made the CPU time at .6 sec. This case reached the iteration limit without

finding a solution. However, by noting the errors on the constraints, the user was able

to modify the independent variables to make a reasonable first guess with all geographic

constraints applied. Even so, this case also ran to the iteration limit without converging on

a solution. In this case CPU time was still .6 seconds. In all, this process took an experienced

POST user (with experience modeling hypersonic glide trajectories, enabling educated first

guesses) a day and a half, running POST approximately 30 times with up to 50 iterations

each.

In comparison, the method to generate the mission described above using GPOCS was

significantly easier. The overall trajectory as compared to POST is presented in Figure 10.

Figure 10. Initial Conditions of the Final Optimization Comparison

Upon the user defining the waypoint, being the end of the first phase, and the no fly

zones as the path constraints the trajectory is ready to be run. Simply put, no iterative

method is necessary to generate the trajectory as in the case of POST. The results of the

trajectory comparison is seen in Figures 11 through 15
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Figure 13. Velocity of the Final Optimization Comparison
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Figure 14. Total Heat of the Final Optimization Comparison
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Figure 15. Peak Heating of the Final Optimization Comparison

V. Conclusion

This paper presents an example of employing the Gauss Pseudospectral Optimization

method in optimal trajectory generation of a hypersonic glide vehicle. A brief description

of the implicit optimization method used in the Pseudospectral method is discussed and

contrasted with the method used in POST. A series of comparison optimal trajectories are

presented and reviewed. The comparisons reveal GPOCS generated trajectories produce

similar results to those of POST. However, the iterative approach commonly used in POST

is not necessary to successfully generate a complex trajectory in GPOCS.
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A. Hypersonic Vehicle Aerodynamic Data

The following is taken from18 and is used to create a Mach independent model for use in

this research.

Table A.1. High Lift Hypersonic Glide Vehicle Aero Data Base

Lift to Drag Ratio (L/D)

AOA Mach 3.5 Mach 5 Mach 8 Mach 10 Mach 15 Mach 20 Mach 23

10◦ 2.2000 2.5000 3.1000 3.5000 3.3846 3.2692 3.2000

15◦ 2.5000 2.6616 2.9846 3.2000 3.0846 2.9692 2.9000

20◦ 2.2000 2.3616 2.6846 2.9000 2.7846 2.6692 2.6000

Coefficient of Lift (CL)

AOA Mach 3.5 Mach 5 Mach 8 Mach 10 Mach 15 Mach 20 Mach 23

10◦ 0.4500 0.4250 0.4000 0.3800 0.3700 0.3600 0.3500

15◦ 0.7400 0.7000 0.6700 0.6300 0.6000 0.5700 0.5570

20◦ 1.0500 1.0000 0.9500 0.9000 0.8500 0.8000 0.7800

Coefficient of Drag (CD)

AOA Mach 3.5 Mach 5 Mach 8 Mach 10 Mach 15 Mach 20 Mach 23

10◦ 0.2045 0.1700 0.1290 0.1090 0.1090 0.1090 0.1090

15◦ 0.2960 0.2630 0.2240 0.1970 0.1950 0.1920 0.1920

20◦ 0.4770 0.4230 0.3540 0.3100 0.3050 0.3000 0.3000

HGV-H Aero Reference Area Sref= 750 in2

HGV-H Mass m = 2000 lbs = 907.186 kg (assuming g = 32.174 ft/s2)
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B. Gauss Pseudospectral Method Exposition

For completeness, an introduction to the Gauss Pseudospectral Method (GPM), which

is the basis for the software package used in this research, is presented below. The GPM is

an orthogonal collocation method where the collocation points are the Legendre-Gauss (LG)

points. The description herein is a compilation from1,22–26 which is based on.27,28 Additional

implementation methods are in.26,29–31

B.I. Continuous Bolza Problem

The dynamic optimization problem is restated here with the transformation of the inde-

pendent variable t:

t =
tf − t0

2
τ +

tf + t0
2

(B.1)

The optimal control problem is to determine the state, x(τ) ∈ R
n, control, u(τ) ∈ R

m, initial

time, t0, and final time, tf , that minimizes the cost functional:

J = φ(x(−1), t0,x(1), tf) +
tf − t0

2

∫ 1

−1

L(x(τ),u(τ), τ ; t0, tf)dτ (B.2)

subject to the constraints

dx

dτ
=

tf − t0
2

f(x(τ),u(τ), τ ; to, tf ) (B.3)

ψ(x(−1), t0,x(1), tf) = 0 (B.4)

C(x(τ),u(τ), τ ; to, tf) ≤ 0 (B.5)

Herein, the optimal control problem of Eqs. (B.2-B.5) is called the continuous Bolza problem.

B.II. Gauss Pseudospectral Discretization of Continuous Bolza Problem

The direct approach to solving the continuous Bolza optimal control problem of Sec. B.I

is to discretize and transcribe Eqs. (B.2-B.5) to a nonlinear programming problem (NLP).

The Gauss pseudospectral method, like Legendre and Chebyshev methods, is based on ap-

proximating the state and control trajectories using interpolating polynomials. The state is

approximated using a basis of N + 1 Lagrange interpolating polynomials, L.

x(τ) ≈ X(τ) =
N
∑

i−0

X(τi)Li(τ) (B.6)
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where Li(τ)(i = 0, . . . , N) are defined as

Li(τ) =
N
∏

j=0,j 6=i

τ − τj
τi − τj

(B.7)

Additionally, the control is approximated using a basis of N Lagrange interpolating polyno-

mials L∗
i (τ), (i = 1, . . . , N) as

u(τ) ≈ U(τ) =

N
∑

i=1

U(τi)L∗
i (τ) (B.8)

where

L∗
i (τ) =

N
∏

j=1,j 6=i

τ − τj
τi − τj

(B.9)

It can be seen from Eqs. (B.7) and (B.9) that Li(τ)(i = 0, . . . , N) and L∗
i (τ)(i = 1, . . . , N)

satisfy the properties

Li(τj) =







1 , i = j

0 , i 6= j
and L∗

i (τj) =







1 , i = j

0 , i 6= j
(B.10)

Differentiating the expression in Eq. (B.6) produces

ẋ(τ) ≈ Ẋ(τ) =

N
∑

i=0

X(τi)L̇i(τ) (B.11)

The derivative of each Lagrange polynomial at the LG points can be represented in a differ-

ential approximation matrix, D ∈ R
N×N+1. The elements of the differential approximation

matrix are determined offline as follows:

Dki = L̇i(τk) =

N
∑

i=0

N
∏

j=0,j 6=i,l

(τk − τj)

N
∏

j=0,j 6=i

(τi − τj)

(B.12)
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where k = 1, . . . , N and i = 0, . . . , N . The dynamic constraint is transcribed into algebraic

constraints via the differential approximation matrix as follows:

N
∑

i=0

DkiXi −
tf − t0

2
f(Xk,Uk, τk; t0, tf ) = 0 (k = 1, . . . , N) (B.13)

where Xk ≡ X(τk) ∈ R
n and Uk ≡ U(τk) ∈ R

m (k = 1, . . . , N). Note that the dynamic

constraint is collocated only at the LG points and not at the boundary points (this form of

collocation differs from other well known pseudospectral methods31,32). Additional variables

in the discretization are defined as follows: X0 ≡ X(−1), and Xf ≡ X(1), where Xf is

defined in terms of Xk, (k = 0, . . . , N) and U(τk)(k = 1, . . . , N) via the Gauss quadrature.33

Xf ≡ X0 +
tf − t0

2

N
∑

k=1

wkf(Xk,Uk, τk; t0, tf ) (B.14)

The continuous cost function of Eq. (B.2) is approximated using a Gauss quadrature33 as

J = φ(X0, t0,Xf , tf) +
tf − t0

2

N
∑

k=1

wkL(Xk,Uk, τk; t0, tf) : (B.15)

where wk are the Gauss weights. The boundary constraint of Eq. (B.4) is expressed as

ψ(X0, t0,Xf , tf ) = 0 (B.16)

Furthermore, the path constraint of Eq. (B.5) is evaluated at the LG points as

C(Xk,Uk, τk; t0, tf) ≤ 0 (k = 1, . . . , N) (B.17)

The cost function of Eq. (B.15) and the algebraic constraints of Eqs. (B.13), (B.14), (B.16),

and (B.17) define an NLP whose solution is an approximate solution to the continuous Bolza

problem. Finally, it is noted that the above discretization can be employed in multiple-

phase problems by transcribing the problem in each phase using the above discretization

and connecting the phases by linkage constraints:

P(s)(x(ps
l
)(tf), t

(ps
l
)

f ;q(ps
l
),x(ps

u)(t0), t
(ps

u)
0 ;q(ps

u)) = 0, (pl, pu ∈ [1, . . . , P ] , s = 1, . . . , Lp)

(B.18)

where x(p)(t) ∈ R
np,u(p)(t) ∈ R

mp,q(p) ∈ R
qp, and t ∈ R are, respectively, the state, control,

static parameters, and time in phase p ∈ [1, . . . , P ], Lp is the number of phases to be linked,
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psl ∈ [1, . . . , P ] , (s = 1, . . . , Lp) are the “left” phase numbers, and psu ∈ [1, . . . , P ] , (s =

1, . . . , Lp) are the “right” phase numbers. where the sum of the cost for each phase:

J =

P
∑

p=1

J (p) (B.19)

becomes the final cost to be minimized.

B.III. KKT Conditions of the NLP

The first-order optimality conditions (i. e. , the Karush-Kuhn-Tucker (KKT) condi-

tions) of the NLP can be obtained using the augmented cost function or Lagrangian. The

augmented cost function is formed using the Lagrange multipliers Λ̃k ∈ R
n, µ̃k ∈ R

c,

k = 1, . . . , N , Λ̃F ∈ R
n, and ν̃ ∈ R

q as

Ja = φ(X0, t0,Xf , tf) +
tf − t0

2

N
∑

k=1

wkL(Xk,Uk, τk; t0, tf) − ν̃Tψ(X0, t0,Xf , tf )

−
N
∑

k=1

µ̃TkC(Xk,Uk, τk; to, tf) −
N
∑

k=1

Λ̃T
k

(

N
∑

i=1

DkiXi −
tf − t0

2
f(Xk,Uk, τk; t0, tf)

)

− Λ̃T
F

(

Xf − X0 −
tf − t0

2

N
∑

k=1

wkf(Xk,Uk, τk; to, tf )

)

(B.20)

The KKT conditions are found by setting equal to zero the derivatives of the Lagrangian

with respect to X0, Xk, Xf , Uk, Λ̃k, µ̃k, Λ̃F , ν̃, t0, tf . The solution to the NLP of Sec. B.II
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must satisfy the following KKT conditions:

N
∑

i=0

XiDki =
tf − t0

2
fk (B.21)

N
∑

i=1

(

Λ̃T
i

wi
+ Λ̃T

F

)

D†
ki + Λ̃T

FD
†
k N+1 =

tf − t0
2

(

∂Lk
∂Xk

−
(

Λ̃T
k

wk
+ Λ̃T

F

)

∂fk
∂Xk

+
2

tf − t0

µ̃Tk
wk

∂Ck
∂Xk

) (B.22)

0 =
∂Lk
∂Uk

+

(

Λ̃T
k

wk
+ Λ̃T

F

)

∂fk
∂Uk

− 2

tf − t0

µ̃Tk
wk

∂Ck
∂Uk

(B.23)

ψ(Xo, t0,Xf , tf) = 0 (B.24)

Λ̃T
0 = − ∂φ

∂X0
+ ν̃T

∂ψ

∂X0
(B.25)

Λ̃T
F =

∂φ

Xf

− ν̃T
∂ψ

Xf

(B.26)

−tf − t0
2

N
∑

k=1

wk
∂H̃k

∂t0
+

1

2

N
∑

k=1

wkH̃k =
∂φ

∂t0
− ν̃T

∂ψ

∂t0
(B.27)

tf − t0
2

N
∑

k=1

wk
∂H̃k

∂tf
+

1

2

N
∑

k=1

wkH̃k = − ∂φ

∂tf
+ ν̃T

∂ψ

∂tf
(B.28)

Ck ≤ 0 (B.29)

µ̃jk = 0, when Cjk < 0 (B.30)

µ̃jk ≤ 0, when Cjk = 0 (B.31)

Xf = X0 +
tf − t0

2

N
∑

k=1

wkfk (B.32)

Λ̃F = Λ̃0 +
tf − t0

2

N
∑

k=1

wk

(

− ∂Lk
∂Xk

−
(

Λ̃T
k

wk
+ Λ̃T

F

)

∂fk
∂Xk

+
2

tf − t0

µ̃Tk
wk

∂Ck
∂Xk

)

(B.33)

where the shorthand notation Lk ≡ L(Xk,Uk, τk; t0, tf), fk ≡ f(Xk,Uk, τk; to, tf), H̃k ≡
H̃k(Xk, Λ̃k, µ̃k,Uk, τk; t0, tf), and Cjk ≡ Cj(Xk,Uk, τk; t0, tf ) is used. The augmented Hamil-

tonian, H̃k, is defined as

H̃k ≡ Lk +

(

Λ̃T
k

wk
+ Λ̃T

F

)

fk −
2

tf − t0

µ̃Tk
wk
Ck (B.34)
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and Λ̃0 is defined as

Λ̃T
0 = − ∂φ

∂X0

+ ν̃T
∂ψ

∂X0

(B.35)

Note that the sign of the µ̃Tk term is opposite to the µT term; thus, the software output

requires a sign change to match the analytical results presented prior to this Appendix.

B.IV. First-Order Optimality Conditions of Continuous Bolza Problem

The indirect approach to solving the continuous Bolza problem of Eqs. (B.2-B.5) in

Sec. B.I is to apply the calculus of variations and Pontryagin’s Maximum Principle34 to

obtain the first-order necessary conditions for optimality.35 These variational conditions are

typically derived using the augmented Hamiltonian, H , defined as

H(x, λ, µ,u, τ ; t0, tf ) = L(x,u, τ ; t0, tf) + λT (τ)f(x,u, τ ; to, tf) − µT (τ)C(x,u, τ ; t0, tf )

(B.36)

where λ(τ) ∈ R
n is the costate and µ(τ) ∈ R

c is the Lagrange multiplier associated with the

path constraint. The continuous-time first-order optimality conditions can be shown to be

dx

dτ
=
tf − t0

2
f(x,u, τ ; t0, tf) =

tf − t0
2

∂H

∂λ
(B.37a)

dλ

dτ
=
tf − t0

2

(

−∂L
∂x

− λT
∂f

∂x
+ µT

∂C

∂x

)

= −tf − t0
2

∂H

∂x
(B.37b)

0 =
∂L

∂u
+ λT

∂f

∂u
− µT

∂C

∂u
=
∂H

∂u
(B.37c)

ψ(x(τ0), t0,x(τf), tf) = 0 (B.37d)

λ(τ0) = − ∂φ

∂x(τ0)
+ νT

∂ψ

∂x(τ0)
, λ(τf) =

∂φ

∂x(τf )
− νT

∂ψ

∂x(τf )
(B.37e)

H(t0) =
∂φ

∂t0
− νT

∂φ

∂t0
, H(tf) = − ∂φ

∂tf
+ νT

∂φ

∂tf
(B.37f)

µj(τ) = 0, when Cj(x,u, τ ; t0, tf ) < 0, j = 1, . . . , c (B.37g)

µj(τ) ≤ 0, when Cj(x,u, τ ; t0, tf) = 0, j = 1, . . . , c (B.37h)

where ν ∈ R
q is the Lagrange multiplier associated with the boundary condition ψ. It can

be shown that the augmented Hamiltonian at the initial and final times can be written,

respectively, as

H(t0) = −tf − t0
2

∫ 1

−1

∂H

∂to
dτ +

1

2

∫ 1

−1

Hdτ (B.38)

H(tf) =
tf − t0

2

∫ 1

−1

∂H

∂tf
dτ +

1

2

∫ 1

−1

Hdτ (B.39)
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B.V. Gauss Pseudospectral Discretization Necessary Conditions

In order to discretize the variational conditions of Sec. B.IV using the Gauss pseudospec-

tral discretization, it is necessary to form a suitable approximation for the costates. In this

method, the costate, λ(τ), is approximated as follows:

λ(τ) ≈ Λ(τ) =

N+1
∑

i=1

λ(τi)L†
i(τ) (B.40)

where L†
i(τ)(i = 1, . . . , N + 1) are defined as

L†
i(τ) =

N+1
∏

j=1,j 6=i

τ − τj
τi − τj

(B.41)

It is emphasized that the costate approximation is different from the state approximation. In

particular, the basis of the N+1 Lagrange interpolating polynomials L†
i(τ)(i = 1, . . . , N+1)

includes the costate at the final time (as opposed to the initial time which is used in the

state approximation). This (non-intuitive) costate approximation is necessary in order to

provide a complete mapping between the KKT conditions and the variational conditions.

Using the costate approximation of Eq. (B.40), the first-order necessary conditions of the

continuous Bolza problem in Eq. (B.37) are discretized as follows. First, the state and control

are approximated using Eq. (B.6) and Eq. (B.8), respectively. Next, the costate is approxi-

mated using the basis of N +1 Lagrange interpolating polynomials as defined in Eq. (B.40).

The continuous-time first-order optimality conditions of Eq. (B.37) are discretized using the

variables X0 ≡ X(−1), Xk ≡ X(τk) ∈ R
n, and Xf ≡ X(1) for the state; Uk ≡ U(τk) ∈ R

m

for the control; Λ0 ≡ Λ(−1), Λk ≡ Λ(τk) ∈ R
n, and ΛF ≡ Λ(1) for the costates; and

µk ≡ µ(τk) ∈ R
c, for the Lagrange multiplier associated with the path constraints at the LG

points k = 1, . . . , N . The other unknown variables in the problem are the initial and final

times, t0 ∈ R, tf ∈ R, and the Lagrange multiplier, ν ∈ R
q. The total number of variables

is then given as (2n + m + c)N + 4n + q + 2. These variables are used to discretize the

continuous necessary conditions of Eq. (B.37) via the Gauss pseudospectral discretization.

Note that the derivative of the state is approximated using Lagrange polynomials based on

N + 1 points consisting of the N LG points and the initial time, τ0, while the derivative of

the costate is approximated using Lagrange polynomials based on N +1 points consisting of

the N LG points and the final time, τf . The resulting algebraic equations that approximate
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the continuous necessary conditions at the LG points are given as

N
∑

i=1

XiDki =
tf − t0

2
fk (B.42)

N
∑

i=1

ΛiD
†
ki + ΛFD

†
kN+1 =

tf − t0
2

(

− ∂Lk
∂Xk

− ΛT
k

∂fk
∂Xk

+ µTk
∂Ck
∂Xk

)

(B.43)

0 =
∂Lk
∂Uk

+ ΛT
k

∂fk
∂Uk

− µTk
∂Ck
∂Uk

(B.44)

ψ(X0, t0,Xf , tf ) = 0 (B.45)

Λ0 = − ∂φ

∂X0
+ νT

∂ψ

∂X0
(B.46)

ΛF =
∂φ

∂Xf

− νT
∂ψ

∂Xf

(B.47)

−tf − t0
2

N
∑

k=1

wk
∂Hk

∂t0
+

1

2

N
∑

k=1

wkHk =
∂φ

∂t0
− νT

∂ψ

∂t0
(B.48)

tf − t0
2

N
∑

k=1

wk
∂Hk

∂tf
+

1

2

N
∑

k=1

wkHk = − ∂φ

∂tf
+ νT

∂ψ

∂tf
(B.49)

µjk = 0, when Cjk < 0 (B.50)

µjk ≤ 0, when Cjk = 0 (B.51)

for k = 1, . . . , N and j = 1, . . . , c. The final two equations that are required (in order to link

the initial and final state and costate, respectively) are

Xf = X0 +
tf − t0

2

N
∑

k=1

wkfk (B.52)

ΛF = Λ0 +
tf − t0

2

N
∑

k=1

wk

(

− ∂Lk
∂Xk

− ΛT
k

∂fk
∂Xk

+ µTk
∂Ck
∂Xk

)

(B.53)

The total number of equations in the set of discrete necessary conditions of Eqs. (B.42-B.53)

is (2n + m + c)N + 4n + q + 2 (the same number of unknown variables). Solving these

nonlinear algebraic equations would be an indirect solution to the optimal control problem.

B.VI. Costate Estimate

One of the key features of the Gauss pseudospectral method is the ability to map the KKT

multipliers of the NLP to the costates of the continuous-time optimal control problem. In

particular, using the results of Sections B.III and B.V, a costate estimate for the continuous
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Bolza problem can be obtained at the Legendre-Gauss points and the boundary points.

This costate estimate is taken from27 and is summarized below via the Gauss Pseudospectral

Costate Mapping Theorem:

Theorem B.1. Gauss Pseudospectral Costate Mapping Theorem: The Karush-

Kuhn-Tucker (KKT) conditions of the NLP are exactly equivalent to the discretized form of

the continuous first-order necessary conditions of the continuous Bolza problem when using

the Gauss pseudospectral discretization. Furthermore, a costate estimate at the initial time,

final time, and the Legendre-Gauss points can be found from the KKT multipliers, Λ̃k, µ̃k,

Λ̃F , and ν̃,

Λk =
Λ̃k

wk
+ Λ̃F , µk =

2

tf − t0

µ̃k
wk
, ν = ν̃, Λ(t0) = Λ̃o, Λ(tf ) = Λ̃F (B.54)

Using the substitutions of Eq. (B.54), it can be seen that Eqs. (B.21-B.33) are exactly the

same as Eqs. (B.42-B.53).

B.VII. Computation of Boundary Controls

It is seen in the GPM that the control is discretized only at the LG points and is not

discretized at either the initial or the terminal point. Consequently, the solution of the NLP

defined by Eqs. (B.13-B.17) does not produce values of the controls at the boundaries. The

ability to obtain accurate initial and terminal controls can be important in many applications,

particularly in guidance where real-time computation of the initial control is of vital interest.

At first glance, it may seem that the lack of control information at the boundaries can

be overcome simply via extrapolation of the control at the LG points. However, multiple

reasons exist as to why this is not the best approach. First, no particular functional form for

the control is assumed in the GPM discretization. As a result, the best function to use for

extrapolation is ambiguous. Second, any reasonable extrapolation of the control (e.g., linear,

quadratic, cubic, or spline) may violate a path constraint which, in general, will render the

extrapolated control infeasible. Third, even if the extrapolated control is feasible, it will

not satisfy the required optimality conditions at the boundaries (i. e. the control will be

suboptimal with respect to the NLP). Consequently, it is both practical and most rigorous

to develop a systematic procedure to compute the boundary controls. The primal (state)

and dual (costate) solutions of the NLP arising from the Gauss pseudospectral method are

used to compute the boundary controls.25

Computation of the initial control is done first since the approach for computing the ter-

minal control is identical. First, recalling the augmented Hamiltonian, H , for the continuous-
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time optimal control problem in Eq. (B.36) is

H(x,u, λ, µ) ≡ L+ λTf − µTC (B.55)

where shorthand notation is used. Recall from the principle of Pontryagin, at every instant

of time the optimal control is the control u∗(τ) ∈ U that satisfies the condition

H(x∗,u∗, λ∗, µ∗) ≤ H(x∗,u, λ∗, µ∗) (B.56)

where U is the feasible control set. Consequently, for a given instant of time τ where x∗(τ),

λ∗(τ), and µ∗(τ) are known, Eq. (B.56) is a constrained optimization problem in u(τ) ∈ R
m.

In order to solve this constrained optimization problem at the initial time, it is necessary to

know x∗(τ0), λ
∗(τ0), and µ∗(τ0).

Consider the information that can be obtained by solving the NLP associated with the

GPM. In particular, the primal solution to the NLP produces X(τ0) while the dual solution

to the NLP can be manipulated algebraically to obtain the initial costate, Λ(τ0). However,

because the NLP does not evaluate the path constraint at the boundaries, there is no asso-

ciated Lagrange multiplier µ∗(τ0). This apparent impediment can be overcome by applying

the minimum principle in a manner somewhat different from that given in Eq. (B.56). In

particular, suppose we let H be the Hamiltonian (not the augmented Hamiltonian), where

H is defined as

H(x,u, λ) ≡ L+ λTf (B.57)

It is seen in Eq. (B.57) that the term involving the path constraint is not included. The

path constraint is instead incorporated into the feasible control set. In particular, suppose

we let V0 be

V0 = U
⋂

C0 (B.58)

where V0 is the intersection of the original set of feasible controls at time τ0, denoted U , with

the set of all controls at time τ0 that satisfy the inequality constraint of Eq. (B.17), denoted

C0. Then, using the values of X(τ0) and Λ(τ0), the following modified optimization problem

in m variables U(τ0) ∈ R
m can be solved to obtain the initial control, U(τ0):

min
U(τ0)∈V0

H(X(τ0),U(τ0),Λ(τ0), τ0; t0, tf) (B.59)

It is noted that, because V0 is restricted by the inequality path constraint at τ0, the solution
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of U(τ0) is equivalent to the solution of the following problem:

min
U(τ0)∈U

H(X(τ0),U(τ0),Λ(τ0), τ0; t0, tf)

subject to C(X(τ0),U(τ0), τ0; t0, tf) ≤ 0
(B.60)

Interestingly, if the constraint is active, then the initial path constraint multiplier, µ∗(τ0), will

also be determined by the minimization problem of Eq. (B.60). Finally, similar to the initial

time, the control at the terminal time, U(τf ), can be obtained by solving the minimization

problem of Eq. (B.60) at τ = τf , i. e.

min
U(τf )∈U

H(X(τf ),U(τf),Λ(τf ), τf ; t0, tf)

subject to C(X(τf),U(τf ), τf ; t0, tf) ≤ 0
(B.61)

The Gauss Pseudospectral Optimal Control Software (GPOCS) is a software program written

in MATLABa for solving multiple-phase optimal control problems, which implements the

algorithm as described above.

aMATLAB is a registered trademark of The Mathworks, Inc., 3 Apple Hill Drive, Natick, MA
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